All questions are for both separate science and combined science students

Q1.

A student investigated the energy change of the reaction between zinc and copper sulfate solution.

This is the method used.

- 1. Measure 25 cm³ of copper sulfate solution into a polystyrene cup.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 0.20 g of zinc powder to the copper sulfate solution.
- 4. Stir the reaction mixture.
- 5. Record the highest temperature reached.
- 6. Repeat steps 1 to 5 with different masses of zinc powder.

The figure below shows the results.

(a) Draw two lines of best fit on the figure above.

The lines should cross.

	Do not refer to anomalous points.
Į	Use data from the figure above.
	Explain why using a polystyrene cup gives more accurate results than using a glass peaker. Complete the ionic equation for the reaction between zinc and copper sulfate solution.
	peaker.

A different student repeated steps 1 to 5 of the method four times using $0.50~{\rm g}$ of zinc powder.

The table below shows the results.

	Trial 1	Trial 2	Trial 3	Trial 4
Highest temperature reached in °C	37.6	37.2	37.8	37.4

(e)	Calculate the mean highest temperature reached.	
	Include the uncertainty in your answer.	
	Mean highest temperature reached = ± °C	(3)
(f)	The results show random errors.	
	The student did not make any measuring errors.	
	Suggest one reason for the random errors in this experiment.	
		(4)
	(Total 14 ma	(1) arks)

(3)

Q2.

This question is about propane (C₃H₈).

Figure 1 shows the displayed structural formula of propane.

 	 	· · · · · · · · · · · · · · · · · · ·	

Propane reacts with oxygen to produce carbon dioxide and water.

The reaction is exothermic.

(b) Figure 2 shows four reaction profiles.

Which is the correct reaction profile and labels for the reaction between propane and oxygen?

Tick (✓) one box.

A B C D

(1)

(c) **Figure 3** shows the displayed formula equation for the reaction between propane and oxygen.

Figure 3

The overall energy change of this exothermic reaction is 2219 kJ/mol.

The table below shows the bond energies of the bonds in the reaction.

	C-C	C — H	0=0	C = O	O-H
Energy in kJ/mol	347	x	498	805	464

Calculate the bond energy of the C — H bond (X). (HT only)

Bond energy of the C — H bond (\mathbf{X}) = _____ kJ/mol

5)

(Total 9 marks)

Q3.

This question is about hydrogen and compounds of hydrogen.

Figure 1 shows the displayed formulae for the reaction between hydrogen and chlorine.

Figure 1

$$H-H + Cl-Cl \longrightarrow 2H-Cl$$

The table below shows the bond energies.

Bond	$H\!-\!H$	Cl — Cl	H-Cl
Bond energy in kJ/mol	436	346	432

(a)	Which expression shows how to calculate the overall energy change for the reaction
	in Figure 1? (HT only)

Use the table above.

Tick (✓) one box.

The reaction between hydrogen and chlorine is exothermic.

(b) Explain why this reaction releases energy to the surroundings. (HT only)

(2)

(1)

(c) **Figure 2** shows part of a reaction profile for the reaction between hydrogen and chlorine.

Complete the reaction profile in Figure 2.

You should:

- label the activation energy
- label the overall energy change.

(d) Draw a dot and cross diagram for a molecule of hydrogen chloride (HCI).Show the outer shell electrons only.

(3)

(e) Figure 3 represents molecules of methane and of poly(ethene).

Figure 3

Methane Poly(ethene) $\begin{array}{cccc}
H & H \\
- & - & - \\
H & - & -$

Methane is a gas at room temperature but poly(ethene) is a solid at room temperature.

Explain why methane and poly(ethene) exist in different states at room temperature.

(4)

(Total 12 marks)